Dendritic calcium encodes striatal neuron output during up-states.

نویسندگان

  • Jason N D Kerr
  • Dietmar Plenz
چکیده

Striatal spiny projection neurons control basal ganglia outputs via action potential bursts conveyed to the globus pallidus and substantia nigra. Accordingly, burst activity in these neurons contributes importantly to basal ganglia function and dysfunction. These bursts are driven by multiple corticostriatal inputs that depolarize spiny projection neurons from their resting potential of approximately -85 mV, which is the down-state, to a subthreshold up-state of -55 mV. To understand dendritic processing of bursts during up-states, changes in intracellular calcium concentration ([Ca2+]i) were measured in striatal spiny projection neurons from cortex-striatum-substantia nigra organotypic cultures grown for 5-6 weeks using somatic whole-cell patch recording and Fura-2. During up-states, [Ca2+]i transients at soma and primary, secondary, and tertiary dendrites were highly correlated with burst strength (i.e., the number of spontaneous action potentials). During down-states, the action potentials evoked by somatic current pulses elicited [Ca2+]i transients in higher-order dendrites that were also correlated with burst strength. Evoked bursts during up-states increased dendritic [Ca2+]i transients supralinearly by >200% compared with the down-state. In the presence of tetrodotoxin, burst-like voltage commands failed to elicit [Ca2+]i transients at higher-order dendrites. Thus, dendritic [Ca2+]i transients in spiny projection neurons encode somatic bursts supralinearly during up-states through active propagation of action potentials along dendrites. We suggest that this conveys information about the contribution of a spiny projection neuron to a basal ganglia output specifically back to the corticostriatal synapses involved in generating these outputs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Action potential timing determines dendritic calcium during striatal up-states.

Up-states represent a key feature of synaptic integration in cortex and striatum that involves activation of many synaptic inputs. In the striatum, the sparse firing and tight control of action potential timing is in contrast to the large intracellular membrane potential depolarizations observed during the up-state. One hallmark of striatal spiny projection neurons is the delay to action potent...

متن کامل

Reactivation of the same synapses during spontaneous up states and sensory stimuli.

In the mammalian brain, calcium signals in dendritic spines are involved in many neuronal functions, particularly in the induction of synaptic plasticity. Recent studies have identified sensory stimulation-evoked spine calcium signals in cortical neurons in vivo. However, spine signaling during ongoing cortical activity in the absence of sensory input, which is essential for important functions...

متن کامل

Differential Dendritic Integration of Synaptic Potentials and Calcium in Cerebellar Interneurons

Dendritic voltage integration determines the transformation of synaptic inputs into output firing, while synaptic calcium integration drives plasticity mechanisms thought to underlie memory storage. Dendritic calcium integration has been shown to follow the same synaptic input-output relationship as dendritic voltage, but whether similar operations apply to neurons exhibiting sublinear voltage ...

متن کامل

Dendritic coding of multiple sensory inputs in single cortical neurons in vivo.

Single cortical neurons in the mammalian brain receive signals arising from multiple sensory input channels. Dendritic integration of these afferent signals is critical in determining the amplitude and time course of the neurons' output signals. As of yet, little is known about the spatial and temporal organization of converging sensory inputs. Here, we combined in vivo two-photon imaging with ...

متن کامل

Local Postsynaptic Voltage-Gated Sodium Channel Activation in Dendritic Spines of Olfactory Bulb Granule Cells

Neuronal dendritic spines have been speculated to function as independent computational units, yet evidence for active electrical computation in spines is scarce. Here we show that strictly local voltage-gated sodium channel (Nav) activation can occur during excitatory postsynaptic potentials in the spines of olfactory bulb granule cells, which we mimic and detect via combined two-photon uncagi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 22 5  شماره 

صفحات  -

تاریخ انتشار 2002